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Abstract
Recent computational investigations of polymeric and non-polymeric binary
mixtures have reported anomalous relaxation features when both components
exhibit very different mobilities. Anomalous relaxation is characterized by
sublinear power-law behaviour for mean-squared displacements, logarithmic
decay in dynamic correlators, and a striking concave-to-convex crossover in
the latter by tuning the relevant control parameter, in analogy with predictions
of the mode-coupling theory for state points close to higher-order transitions.
We present Monte Carlo simulations on a coarse-grained model for relaxation in
binary mixtures. The liquid structure is substituted by a three-dimensional array
of cells. A spin variable is assigned to each cell, representing unexcited and
excited local states of a mobility field. Changes in local mobility (spin flip) are
permitted according to kinetic constraints determined by the mobilities of the
neighbouring cells. We introduce two types of cell (‘fast’ and ‘slow’) with very
different rates for spin flip. This coarse-grained model qualitatively reproduces
the mentioned anomalous relaxation features observed for real binary mixtures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Binary mixtures of small and large particles with sufficiently large size disparity, at low or
moderate concentrations of the small particles, exhibit a large separation in the timescales
for both components. Recent computational investigations of polymeric and non-polymeric
mixtures of soft spheres [1–3] in such conditions have reported anomalous relaxation features
at intermediate intervals, extending in time over more than three decades between the short-
time ballistic and long-time diffusive regimes. These anomalous features are: (i) sublinear
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power-law behaviour for mean-squared displacements, with decreasing exponent on decreasing
the temperature, (ii) logarithmic relaxation in dynamic correlators, (iii) concave-to-convex
crossover in dynamic correlators by tuning the relevant control parameter. These results exhibit
striking analogies with predictions of the mode-coupling theory (MCT) for state points close
to higher-order MCT transitions [4–6], which arise in regions of the control parameter space
where competition between different mechanisms for dynamic arrest takes place. For the fast
component in binary mixtures we have suggested a competition between confinement and bulk-
like caging [1–3], respectively induced by the host matrix formed by the slow component, and
by the surrounding particles belonging to the fast component. This view is supported by the
observed non-trivial analogies [3] with a recent MCT theory for fluids confined in matrices
with interconnected voids [7, 8], for which a higher-order point has been explicitly derived.
Striking analogies with anomalous relaxation features in short-ranged attractive colloids are
also observed. For these latter systems a higher-order MCT transition has been derived as the
result of a competition between steric repulsion and reversible bond formation for dynamic
arrest [6, 9–11].

Kinetically constrained models [12, 13] are used as coarse-grained pictures for relaxation
in supercooled liquids. In these models, the liquid structure is substituted by an array of cells.
The cell size roughly corresponds to a density correlation length. A spin variable is assigned
to each cell, with values 0 or 1 denoting respectively unexcited and excited local states in a
mobility field. Changes in local mobility (spin flips) for a given cell are permitted according
to kinetic constraints determined by the mobilities of the neighbouring cells. Propagation
of mobility, which yields structural relaxation, occurs via dynamic facilitation: microscopic
regions become temporarily mobile only if neighbouring regions are mobile. Kinetically
constrained models provide in a simple way an important feature exhibited by glass-forming
liquids: the growing of dynamic correlation lengths by decreasing temperature, leading to
dynamic heterogeneity [14–17].

Some of the anomalous dynamic features exhibited by short-ranged attractive colloids,
and associated with a higher-order point within the framework of MCT, such as logarithmic
relaxation or reentrant behaviour of the diffusivity [6], have been recently reproduced by a
simple model based on dynamic facilitation [18]. Motivated by this fact and by the mentioned
dynamic analogies with binary mixtures, we investigate a simple kinetically constrained model
aimed at reproducing qualitative relaxation features for such mixtures. In section 2 we
introduce the model and give computational details. Simulation results are presented and
discussed in section 3.

2. Model and computational details

We have carried out Monte Carlo (MC) simulations on a variation [19] (see below) of the
north-or-east-or-front (NEF) model recently investigated by Berthier and Garrahan [17]. In this
three-dimensional model, directionality in the kinetic constraints is imposed to mimic fragile
liquid behaviour [17]. Spin flip of a given cell is only permitted if there is at least one excited
neighbouring cell in the north-or-east-or-front direction. More specifically, if the cell is denoted
by its position vector i = (ix, iy, iz), spin flip is permitted according to the following rules.

(i) At least one of the neighbouring cells in the north (ix, iy, iz + 1), or east (ix, iy + 1, iz), or
front (ix + 1, iy, iz) direction is excited, i.e., it has spin 1.

(ii) If (i) is fulfilled, spin flip is accepted according to the Metropolis rule [20]. Hence, 1 → 0
is always accepted, while 0 → 1 is accepted with a thermal probability [1 + exp(1/T )]−1,
where T is the temperature.
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Figure 1. Temperature dependence of the mean-squared displacement at composition xf = 0.33.
Symbols correspond to fast cells. Dashed lines correspond to slow cells (same temperatures as for
the former ones, decreasing from top to bottom). Solid straight lines indicate linear or sublinear
power-law behaviour (exponents are given).

In the present work we investigate a binary mixture of cells with the same population of
excitations, [1+exp(1/T )]−1, but different rates for excitation, exp(−E/T )[1+exp(1/T )]−1,
and decay, exp(−E/T ), of the cell mobility. This choice fulfils detailed balance. We use the
activation energies E = 0 and 3 for the different components, which are respectively denoted
as ‘fast’ and ‘slow’ cells. Hence, the spin flip rules for the fast component are the same as in
the original NEF model, aimed at reproducing bulk-like dynamics. The probability of spin flip
for the slow cells is decreased by a factor exp(−3/T ) as compared to that of the fast cells,
providing a large timescale separation for relaxation of both components (see below).

The mixture composition, xf, is defined as the fraction of fast cells. We investigate a wide
range of composition and temperature as control parameters. A square box of side N = 50
cells is used. Periodic boundary conditions are implemented. Slow and fast cells are randomly
distributed according to the selected value of xf. Time is given in MC steps. Within each MC
step a total of N3 trials (one trial for each cell) is performed. The configuration of the mobility
field at times t and t + 1 is defined as that respectively before and after the N3 trials.

3. Results and discussion

We have evaluated the mean-squared displacement according to the definition given in [21].
A ‘probe molecule’ placed in a given cell i at time t is permitted to perform a jump Δ =
(�x ,�y,�z), with �α ∈ {−1, 0, 1}, to an adjacent cell j = i + Δ provided that both i and
j are instantaneously (i.e., at the same time t) in an excited state. Otherwise the jump is not
permitted. If in the former case there are several candidates amongst the adjacent cells; one
of them is randomly selected. The mean-squared displacement is computed from an average
over the trajectories of different (non-interacting) probes initially placed in different cells. In
the case of the binary mixture investigated in this work, only jumps between cells of a same
component (‘fast’ → ‘fast’ or ‘slow’ → ‘slow’) are permitted. In this way the motion of a
probe initially placed in a cell of a given component remains coupled to the mobility field of
that component. Figure 1 shows, at a fixed composition xf = 0.33, results for the mean-squared
displacement computed according to this procedure. The short-time ballistic regime exhibited
by real systems is obviously absent, due to the coarse-grained character of the model. A large
timescale separation is induced between both components at low temperatures. In analogy with
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Figure 2. Temperature dependence of the mean persistence function P(t) at composition xf = 0.33.
Symbols correspond to fast cells. Dashed lines correspond to slow cells (same temperatures as for
the former ones, decreasing from left to right). Solid straight lines indicate logarithmic relaxation.

the behaviour displayed by binary mixtures with large size disparity [1–3], an intermediate
sublinear power-law behaviour is observed for the fast component, and the corresponding
exponent decreases on decreasing the temperature. The latter takes a value of about 0.6 at
the lowest investigated temperature.

We have also computed the mean persistence function P(t) = ∑
i p(i; t)/N3, where

p(i; t) is the persistence function of the cell i at time t . The latter takes the value 1 if no spin flip
has occurred for that cell in the interval [0, t]. If one or more spin flips have occurred, it takes
the value 0. According to the picture of dynamic facilitation, the decay of P(t) is a signature of
structural relaxation [17]. Figure 2 shows the temperature dependence of P(t) at composition
xf = 0.33. The first decay usually observed for any correlator in real systems—corresponding
to the transient regime at microscopic times—is again absent due to coarse-graining. As for the
mean-squared displacement, the introduction of very different rates for cell spin flip yields very
different relaxation times for fast and slow cells. While slow cells display standard relaxation,
fast cells exhibit rather different relaxation features. In full analogy with results for dynamic
correlators of the fast component in binary mixtures [1–3], P(t) shows a concave-to-convex
crossover on decreasing the temperature. At an intermediate temperature, pure logarithmic
relaxation is observed over a time interval of nearly three decades. This behaviour is also
observed by fixing the temperature and varying the mixture composition (see figure 3).

It is worthy of remark that the features displayed in figures 2 and 3 are not specific to
P(t). Qualitatively analogous results are exhibited by other dynamic correlators, such as
intermediate scattering functions. An example is displayed in figure 4 for the incoherent
correlator Fs(q, t). Following the definition given in [22], the latter is computed, for a
wavevector q, as Fs(q, t) = 〈exp[iq·(r(t)−r(0))]〉, where r is the position of a probe molecule.
The latter is permitted to jump between adjacent cells according to the same rules imposed for
the evaluation of the mean-squared displacement of each component (see above). The brackets
denote an average over initial locations of the probe. As in the case of the mean persistence
function, Fs(q, t) exhibits a concave-to-convex crossover on decreasing the temperature, and a
logarithmic decay at some intermediate state point.

In summary, the highly non-trivial anomalous relaxation features recently reported for
binary mixtures with a large timescale separation between both components can be qualitatively
reproduced by a simple kinetically constrained model. The fact that recent work within this
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Figure 3. Symbols: composition dependence of P(t), at T = 0.50, for the fast cells. Dashed lines
correspond to slow cells (same compositions as for the former ones, decreasing from left to right).
The solid straight line indicates logarithmic relaxation.
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Figure 4. Temperature dependence of Fs(q, t), at composition xf = 0.33 and wavevector q = 2.5.
Symbols correspond to fast cells. Dashed lines correspond to slow cells (same temperatures as
for the former ones, decreasing from left to right). The solid straight line indicates logarithmic
relaxation.

approach [18] also reproduces unusual relaxation features for short-ranged attractive colloids
suggests that dynamic facilitation is a relevant ingredient for relaxation in systems with several
competing mechanisms for dynamic arrest. Results reported here provide a new step in
extending the picture of dynamic facilitation, which had been used basically for describing
bulk-like relaxation, to more complex situations.
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